С учетом существующего многообразия технологий позиционирования, неудивительно, что инженеры-разработчики могут испытывать затруднения при выборе подходящего датчика для своего проекта. В данной статье рассматривается, как работают оптические и индуктивные энкодеры, а также анализируются их относительные сильные и слабые стороны.

Оптические энкодеры остаются наиболее распространенным выбором в качестве датчика положения для производителей оборудования с 1970-х годов. Они широко доступны от ряда производителей и могут быть установлены в различном промышленном оборудовании, таком как принтеры, станки с ЧПУ и роботы.

Что такое энкодер?

В первую очередь остановимся на терминологии. Энкодер – это устройство, которое преобразует положение или движение в электрический сигнал, обычно это цифровой код. Их также называют поворотными энкодерами, энкодерами с выходным валом, угловыми датчиками, угловыми энкодерами или датчиками угла поворота, угловыми передатчиками – и этот список можно продолжить. Для целей настоящей статьи далее будем использовать термин энкодер.

Энкодеры могут быть поворотными или линейными. Они также могут быть абсолютными или инкрементальными, и это важное различие. Если мы рассмотрим простой абсолютный вращающийся энкодер, то его электрический выход показывает текущее угловое положение вала сразу после включения питания. Выход инкрементных датчиков передает информацию только о движении вала. Другими словами, выходной сигнал от инкрементного энкодера выдает данные о положении только при движении. Некоторые инкрементные датчики оснащены контрольной отметкой, таким образом энкодер может использовать это в качестве опорной точки, от которой измеряется увеличение расстояния или уменьшение при вращении в обратную сторону.

Выбор инкрементных энкодеров шире, чем абсолютных датчиков, но это меняется со временем, так как величина дополнительных расходов для абсолютных устройств уменьшается. Кроме этого, во многих приложениях, в частности в робототехнике и автоматизированных системах, в меньшей степени допустимо, чтобы оборудование проходило процедуру калибровки при запуске, в таком случае датчики положения должны определять положение в той точке, где находятся.

Чаще всего на выходе инкрементных датчиков снимаются две последовательности импульсов A/B (серии импульсов, обычно со сдвигом фазы канала В относительно канала А на 90°). Это относится к двум или большему числу потоков импульсов низкого напряжения в квадратуре, которые меняются с высокого или низкого состояния при изменении положения. Обнаружение вращения обеспечивается определением, какой из потоков импульсов опережает другой, например, импульсы потока A по фазе на 90° опережают импульсы потока B импульсов или наоборот. На выходе абсолютных энкодеров наиболее часто встречается интерфейс SSI (англ. Synchronous Serial Interface, синхронно-последовательный интерфейс), который является протоколом цифрового обмена данными, различные сочетания битовых значений 0 или 1, которого указывают на абсолютное положение.

Что такое оптический энкодер?

Существует ряд технологий, применяемых в энкодерах для измерения положения, наиболее распространенной из которых является оптическая. В оптическом энкодере луч света направлен сквозь или на диск с отверстиями, так что свет проходит или блокируется. Оптический детектор или считывающая головка воспринимают проходящий свет и генерируют соответствующий электрический сигнал. Из отверстий и серий меток на диске формируется специальный узор в виде оптической решетки, которая может использоваться для измерения угла или движения. Масштаб маркировки может быть очень мелким – вплоть до микрон – позволяя многим оптическим датчикам выдавать данные с высокой степенью точности.

Оптические энкодеры

Рис. 1 Оптические энкодеры используют оптический датчик и диск для измерения угла.

Корпусированный энкодер со сплошным валом является стандартным исполнением, в котором вал энкодера механически соединен с остальной системой. Вал энкодера, на котором закреплен оптический диск закреплен на подшипнике . Оптический диск, в свою очередь, работает в тесной связи с оптическими детекторами. Электрическое подключение обычно реализуется посредством многожильного кабеля, по которому осуществляется электропитание и снимаются выходные данные о положении датчика. Простой электрический интерфейс в сочетании с широкой распространенностью делает такие датчики легко интегрируемыми. Основной недостаток таких энкодеров заключается в том, что они неустойчивы к жестким условиям окружающей среды, в которой может присутствовать вибрация, удары, посторонние вещества или экстремальные температуры. Недостаточная или вообще отсутствующая сигнализация о сбое может привести в худшем случае к некорректному выводу данных положения или – в лучшем случае – сообщению об ошибке. Как правило, выдача ложного положения (без сообщения об ошибке) является гораздо более серьезным сбоем, чем отсутствие данных о положении, поскольку результат может быть катастрофическим.

При использовании датчиков большего диаметра или энкодеров в форме кольца в кратких руководствах часто задаются чрезвычайно жесткие допуски на установку считывающей головки на оптический диск или решетку для достижения заявленных результатов измерений. Такие бескорпусные кольцевые энкодеры особенно чувствительны к наличию посторонних веществ в рабочей зоне оптического датчика, учитывая малый размер оптических элементов, сопоставимый с величиной частиц пыли или грязи.

Неудивительно, что оптические энкодеры обычно не являются предпочтительным выбором для приложений с высокими требованиями к надежности или относящихся к сфере безопасности.

Преимущества
Высокое разрешение, широкая доступность, возможна высокая точность
Недостатки
Хрупкий, чувствительный к посторонним веществам, катастрофические режимы сбоев, ограниченный диапазон температур (от -20 до +70 °C)

Что такое индуктивный энкодер?

В индуктивных энкодерах, часто называемых инкодерами, применены индукционные или трансформаторные принципы для измерения позиции мишени или ротора относительно статора. В таких датчиках используются те же физические принципы, что и в традиционных индуктивных устройствах, таких как бесщеточные резольверы или дифференциальные трансформаторы для измерения линейных перемещений, однако, электрический интерфейс индуктивных энкодеров подобен интерфейсу оптических датчиков положения – простой источник питания постоянного тока и цифровой электрический выходной сигнал.

Большинство традиционных резольверов выглядят скорее, как электрический двигатель – с медными обмотками на статоре, которые взаимодействуют с металлическим ротором или мишенью. Индуктивная или трансформаторная связь между обмотками статора изменяется в зависимости от положения ротора. Вместо конструкции в виде трансформаторных обмоток, в конструкции индуктивных энкодеров используются печатные платы ротора и статора, делая их менее громоздкими, более точными и при этом менее дорогостоящими в производстве.

В связи с их применением в военных самолетах во Второй мировой войне, резольверы и LVDT-датчики получили заслуженную репутацию точных, прочных и надежных устройств, поэтому они становятся автоматическим выбором для приложений с высокими требованиями к надежности и безопасности. Это связано с тем, что принципы работы трансформатора, как правило, не подвержены негативному влиянию неблагоприятных условий окружающей среды, включая наличие грязи, воды и льда.

Индуктивные энкодеры так же, как и оптические датчики, легко интегрируемы, так как требуют только подключения питания и на выходе обеспечивают цифровой сигнал, обозначающий положение. Это свидетельствует о том, что у инкодеров есть все преимущества резольверов, но ни одного из их недостатков.

Поскольку индуктивные энкодеры не содержат в своей конструкции хрупкие оптические компоненты, они не чувствительны к наличию посторонних веществ и работают не только в ограниченных температурных диапазонах. Кроме того, прецизионное измерение положения не зависит от точной соосности движущихся и неподвижных элементов, что обеспечивает широкие допуски при установке и работу без подшипников. Устранение необходимости в подшипниках привело к созданию тонких кольцевых конструкций с малым осевым габаритом и большим, полым валом, что упростило их интеграцию в оборудование с жесткими ограничениями по размеру или весу, такими как кардановы подвесы, роботизированные манипуляторы и приводы.

Примеры индуктивных энкодеров

Рис. 2 – Примеры индуктивных энкодеров

Преимущества
Высокое разрешение, точность, надежность, прочность, долговечность, отсутствие жестких требований к высокоточной соосности.
Недостатки
Рабочий температурный диапазон (от -100 до + 125 ° C) шире, чем у оптических энкодеров, но не так широк, как у резольверов.
Connect with Zettlex

Ask a question

Technical support

This website uses cookies to provide you with the best user experience and site functionality, and provides us with enhanced site analytics. By continuing to view this site without changing your web browser settings, you agree to our use of cookies. To learn more, please view our privacy policy.